Factors Affecting the Intention to Adopt Food Delivery Apps: Value-Based Adoption Model Framework
Main Article Content
Abstract
This research investigates the factors affecting the intention to adopt food delivery apps in Ho Chi Minh City based on the Value-based adoption Model (VAM). The study was conducted using a structural equation model (SEM) to examine data collected from 344 responders. The research results show that benefit values including convenience and perceived enjoyment have a positive impact on perceived value. Sacrifice values include perceived complexity and perceived cost. Perceived value is negatively impacted by both perceived cost and perceived complexity. Perceived value has a strong and positive impact on the intention to adopt food delivery apps. Furthermore, the study results also indicate that perceived privacy risk negatively affects intention. This is one of the first studies applying VAM to investigate factors affecting consumer behavior in the context of Ho Chi Minh City.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
by VNU Journal of Economics and Business
References
Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. DOI: https://doi.org/10.1016/0749-5978(91)90020-T
Bianchi, C., & Andrews, L. (2012). Risk, trust, and consumer online purchasing behavior: A Chilean perspective. International Marketing Review. DOI: https://doi.org/10.1108/02651331211229750
Brown, L. G. (1990). Convenience in services marketing. Journal of Services Marketing, 4(1), DOI: https://doi.org/10.1108/EUM0000000002505
-59.
Cho, M., Bonn, M. A., & Li, J. J. (2019). Differences in perceptions about food delivery apps between single-person and multi-person households. International Journal of Hospitality Management, 77, 108-116. DOI: https://doi.org/10.1016/j.ijhm.2018.06.019
Choe, J. Y., Kim, J. J., & Hwang, J. (2021). Innovative marketing strategies for the successful construction of drone food delivery services: Merging TAM with TPB. Journal of Travel & Tourism Marketing, 38(1), 16-30. DOI: https://doi.org/10.1080/10548408.2020.1862023
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. doi:10.1016/S0378-7206(01)00143-4 DOI: https://doi.org/10.2307/249008
Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18(1), 105. DOI: https://doi.org/10.1037/h0030644
Department of E-commerce and Digital Economy (2022). Vietnam e-commerce report in 2022. <https://idea.gov.vn/?page=document> Accessed 8.4.2023.
Dhir, A., Tandon, A., Kaur, P., & Bhatt, Y. (2021). Why do people purchase from food delivery apps? A consumer value perspective. Journal of Retailing and Consumer Services, 63, 102667-102667. doi:10.1016/j.jretconser.2021.102667 DOI: https://doi.org/10.1016/j.jretconser.2021.102667
e-Conomy SEA (2021). e-Conomy SEA 2021 report. <https://www.bain.com/globalassets/noindex/2021/e_conomy_sea_2021_report.pdf> Accessed 8.4.2023.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. DOI: https://doi.org/10.1177/002224378101800104
Hair, J., Black, W., Babin, B., & Anderson, R. (2014). Multivariate Data Analysis (Seventh Edition). Pearson Education.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43, 115-135. DOI: https://doi.org/10.1007/s11747-014-0403-8
Hong, C., Choi, H., Choi, E. K., & Joung, H. W. (2021). Factors affecting customer intention to use online food delivery services before and during the COVID-19 pandemic. Journal of Hospitality and Tourism Management, 48, 509-518. doi:10.1016/j.jhtm.2021.08.012 DOI: https://doi.org/10.1016/j.jhtm.2021.08.012
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. DOI: https://doi.org/10.1080/10705519909540118
Jun, J., Cho, I., & Park, H. (2018). Factors influencing continued use of mobile easy payment service: an empirical investigation. Total Quality Management & Business Excellence, 29(9-10), 1043-1057. DOI: https://doi.org/10.1080/14783363.2018.1486550
Ariffin, S. K., Mohan, T., & Goh, Y. N. (2018). Influence of consumers’ perceived risk on consumers’ online purchase intention. Journal of Research in Interactive Marketing, 12(3), 309-327. doi:10.1108/jrim-11-2017-0100 DOI: https://doi.org/10.1108/JRIM-11-2017-0100
Kapoor, A. P., & Vij, M. (2018). Technology at the dinner table: Ordering food online through mobile apps. Journal of Retailing and Consumer Services, 43, 342-351. doi:10.1016/j.jretconser.2018.04.001 DOI: https://doi.org/10.1016/j.jretconser.2018.04.001
Kim, H. W., Chan, H. C., & Gupta, S. (2007). Value-based Adoption of Mobile Internet: An empirical investigation. Decision Support Systems, 43(1), 111-126. doi:10.1016/j.dss.2005.05.009 DOI: https://doi.org/10.1016/j.dss.2005.05.009
Li, H., Wu, J., Gao, Y., & Shi, Y. (2016). Examining individuals' adoption of healthcare wearable devices: An empirical study from privacy calculus perspective. International Journal of Medical Informatics, 88, 8-17. doi:10.1016/j.ijmedinf.2015.12.010 DOI: https://doi.org/10.1016/j.ijmedinf.2015.12.010
Liu, F., Zhao, X., Chau, P. Y., & Tang, Q. (2015). Roles of perceived value and individual differences in the acceptance of mobile coupon applications. Internet Research, 25(3), 471-495. DOI: https://doi.org/10.1108/IntR-02-2014-0053
Nguyet, N. T. M., Viet, N. H., & Duong, V. T. (2022). The behavior of using online food delivery services during COVID-19 pandemic. Journal of Asian Business and Economic Studies - JABES, 32(9), 22-41.
Nikou, S. (2019). Factors driving the adoption of smart home technology: An empirical assessment. Telematics and Informatics, 45, 101283. DOI: https://doi.org/10.1016/j.tele.2019.101283
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. doi:10.1037/0021-9010.88.5.879 DOI: https://doi.org/10.1037/0021-9010.88.5.879
Ray, A., Dhir, A., Bala, P. K., & Kaur, P. (2019). Why do people use food delivery apps (FDA)? A uses and gratification theory perspective. Journal of Retailing and Consumer Services, 51, 221-230. doi:10.1016/j.jretconser.2019.05.025 DOI: https://doi.org/10.1016/j.jretconser.2019.05.025
Rogers, E. M. (2010). Diffusion of Innovations: Simon and Schuster.
Shankar, A., Jebarajakirthy, C., Nayal, P., Maseeh, H. I., Kumar, A., & Sivapalan, A. (2022). Online food delivery: A systematic synthesis of literature and framework development. International Journal of Hospitality Management, 104, 103240. DOI: https://doi.org/10.1016/j.ijhm.2022.103240
Shroff, A., Shah, B. J., & Gajjar, H. (2022). Online food delivery research: A systematic literature review. International Journal of Contemporary Hospitality Management, 34(8), 2852-2883. doi:10.1108/IJCHM-10-2021-1273 DOI: https://doi.org/10.1108/IJCHM-10-2021-1273
Song, H., Jasmine, W., Jung, Y., & Jeon, J. (2021). An integrated approach to the purchase decision making process of food-delivery apps: Focusing on the TAM and AIDA models. International Journal of Hospitality Management, 95, 102943-102943. doi:10.1016/j.ijhm.2021.102943 DOI: https://doi.org/10.1016/j.ijhm.2021.102943
Thaichon, P., Lobo, A., & Mitsis, A. (2014). Achieving customer loyalty through service excellence in internet industry. International Journal of Quality and Service Sciences, 6(4), 274-289. DOI: https://doi.org/10.1108/IJQSS-03-2014-0024
Thao, H. T. P., & Long, L. Q. (2021). The factors affect consumer’s trust and continuous usage intention of food delivery mobile app. Journal of Science Ho Chi Minh City Open University-Economic and Business Administration, 16(2), 99-116. doi:10.46223/hcmcoujs.econ.vi.16.2.931.2021 DOI: https://doi.org/10.46223/HCMCOUJS.econ.vi.16.2.931.2021
Thuy, L. N., Tho, T. A., Siem, T. T., & Dat, N. T. (2021). E-satisfaction and continuance intention to use mobile food ordering applications: A case study in Ho Chi Minh City. Journal of Science and Technology, 25-32.
Troise, C., O'Driscoll, A., Tani, M., & Prisco, A. (2021). Online food delivery services and behavioral intention - A test of an integrated TAM and TPB framework. British Food Journal, 123(2), 664-683. doi:10.1108/bfj-05-2020-0418 DOI: https://doi.org/10.1108/BFJ-05-2020-0418
Vishwakarma, P., Mukherjee, S., & Datta, B. (2020). Travelers’ intention to adopt virtual reality: A consumer value perspective. Journal of Destination Marketing & Management, 17, 100456. DOI: https://doi.org/10.1016/j.jdmm.2020.100456
Wang, E. S. T., & Lin, R. L. (2017). Perceived quality factors of location-based apps on trust, perceived privacy risk, and continuous usage intention. Behavior & Information Technology, 36(1), 2-10. DOI: https://doi.org/10.1080/0144929X.2016.1143033
Wang, H. Y., Liao, C., & Yang, L. H. (2013). What affects mobile application use? The roles of consumption values. International Journal of Marketing Studies, 5(2), 11. DOI: https://doi.org/10.5539/ijms.v5n2p11
Wang, H. Y., & Wang, S. H. (2010). Predicting mobile hotel reservation adoption: Insight from a perceived value standpoint. International Journal of Hospitality Management, 29(4), 598-608. doi:10.1016/j.ijhm.2009.11.001 DOI: https://doi.org/10.1016/j.ijhm.2009.11.001
Wang, Y. Y., Lin, H. H., Wang, Y. S., Shih, Y. W., & Wang, S. T. (2018). What drives users’ intentions to purchase a GPS Navigation app: The moderating role of perceived availability of free substitutes. Internet Research, 28(1), 251-274. DOI: https://doi.org/10.1108/IntR-11-2016-0348
Zanetta, L. D. A., Hakim, M. P., & Gastaldi, G. B. (2021). The use of food delivery apps during the COVID-19 pandemic in Brazil: The role of solidarity, perceived risk, and regional aspects. Food Research International, 149, 110671. doi:https://doi.org/10.1016/j.foodres.2021.110671 DOI: https://doi.org/10.1016/j.foodres.2021.110671
Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. Journal of Marketing, 52(3), 2-22. DOI: https://doi.org/10.1177/002224298805200302
Zhao, Y., & Bacao, F. (2020). What factors determining customer continuingly using food delivery apps during 2019 novel coronavirus pandemic period? International Journal of Hospitality Management, 91, 102683. doi:10.1016/j.ijhm.2020.102683 DOI: https://doi.org/10.1016/j.ijhm.2020.102683