Mapping the research of digital transformation in agriculture


Authors

  • Vu Thi Thuy Hang Thuongmai University
  • Nguyen Thi Van Thuongmai University
DOI: https://doi.org/10.57110/vnu-jeb.v5i2.322

Keywords:

Digital transformation, agriculture, bibliometric

Abstract

This study aims to systematically map the rapidly growing research landscape on Digital Transformation in Agriculture (DTA). A bibliometric analysis was conducted on 96 documents related to DTA, sourced from the Scopus database. The research methodology encompasses co-occurrence keyword and co-citation analyses, focusing on 2019 to 2023. The study reveals a significant annual increase in the volume of publications, with Russia emerging as the leading contributor. The co-word analysis identifies three dominant research themes, characterized by 17 keywords with a minimum occurrence of five times. The clusters are innovation and agrifood-tech, sustainable agricultural development and digital economy, digitalization of agriculture, and Russia. The co-citation analysis for cited authors created a network of four clusters of innovation efforts in agriculture, information systems on farms, the role of business models and dynamic capabilities in sustainable intensification, and the challenges, opportunities, and sustainability of DTA. The findings indicate that research on DTA is still developing, with significant research gaps remaining. This study aims to contribute to the field's academic literature and practical applications.

References

Agarwal, R., Gao, G. (Gordon), DesRoches, C., & Jha, A. K. (2010). Research commentary - The digital transformation of healthcare: Current status and the road ahead. Information Systems Research, 21(4), 796-809. https://doi.org/10.1287/isre.1100.0327

Ayre, M., Mc Collum, V., Waters, W., Samson, P., Curro, A., Nettle, R., Paschen, J.-A., King, B., & Reichelt, N. (2019). Supporting and practising digital innovation with advisers in smart farming. NJAS: Wageningen Journal of Life Sciences, 90-91(1), 1-12. https://doi.org/10.1016/j.njas.2019.05.001

Baumüller, H. (2016). Agricultural Service Delivery Through Mobile Phones: Local Innovation and Technological Opportunities in Kenya. In Technological and Institutional Innovations for Marginalized Smallholders in Agricultural Development (pp. 143-162). Springer International Publishing. https://doi.org/10.1007/978-3-319-25718-1_9

Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., & Venkatraman, N. (2013). Digital business strategy: Toward a next generation of insights. MIS Quarterly, 37(2), 471–482. https://doi.org/10.25300/MISQ/2013/37:2.3

Blok, V., & Gremmen, B. (2018). Agricultural technologies as living machines: Toward a biomimetic conceptualization of smart farming technologies. Ethics, Policy & Environment, 21(2), 246-263. https://doi.org/10.1080/21550085.2018.1509491

Boyack, K. W., & Klavans, R. (2010). Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology, 61(12), 2389-2404. https://doi.org/10.1002/asi.21419

Cassman, K. G., & Grassini, P. (2020). A global perspective on sustainable intensification research. Nature Sustainability, 3(4), 262-268. https://doi.org/10.1038/s41893-020-0507-8

Eastwood, C., Klerkx, L., & Nettle, R. (2017). Dynamics and distribution of public and private research and extension roles for technological innovation and diffusion: Case studies of the implementation and adaptation of precision farming technologies. Journal of Rural Studies, 49, 1-12. https://doi.org/10.1016/j.jrurstud.2016.11.008

Eremina, I., Yudin, A., Tarabukina, T., & Oblizov, A. (2022). The Use of Digital Technologies to Improve the Information Support of Agricultural Enterprises. International Journal of Technology, 13(7), 1393. https://doi.org/10.14716/ijtech.v13i7.6184

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/https://doi.org/10.1016/j.jbusres.2021.04.070

Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338-342. https://doi.org/10.1096/fj.07-9492LSF

Fielke, S. J., Garrard, R., Jakku, E., Fleming, A., Wiseman, L., & Taylor, B. M. (2019). Conceptualising the DAIS: Implications of the ‘Digitalisation of Agricultural Innovation Systems’ on technology and policy at multiple levels. NJAS: Wageningen Journal of Life Sciences, 90-91(1), 1-11. https://doi.org/10.1016/j.njas.2019.04.002

Fleming, A., Jakku, E., Fielke, S., Taylor, B. M., Lacey, J., Terhorst, A., & Stitzlein, C. (2021). Foresighting Australian digital agricultural futures: Applying responsible innovation thinking to anticipate research and development impact under different scenarios. Agricultural Systems, 190, 103120. https://doi.org/10.1016/j.agsy.2021.103120

Fountas, S., Carli, G., Sørensen, C. G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., Liakos, B., Canavari, M., Wiebensohn, J., & Tisserye, B. (2015). Farm management information systems: Current situation and future perspectives. Computers and Electronics in Agriculture, 115, 40-50. https://doi.org/10.1016/j.compag.2015.05.011

Ge, L., & Bogaardt, M.-J. (2015). Bites into the bits: Governance of data harvesting initiatives in agrifood chains. European Association of Agricultural Economists.

Guz, A. N., & Rushchitsky, J. J. (2009). Scopus: A system for the evaluation of scientific journals. International Applied Mechanics, 45(4), 351-362. https://doi.org/10.1007/s10778-009-0189-4

Okolie, C. C., Danso-Abbeam, G., Groupson-Paul, O., & Ogundeji, A. A. (2022). Climate-smart agriculture amidst climate change to enhance agricultural production: A bibliometric analysis. Land, 12(1), 50. https://doi.org/10.3390/land12010050

Poppe, K. J., Wolfert, S., Verdouw, C., & Verwaart, T. (2013). Information and communication technology as a driver for change in agri‐food chains. EuroChoices, 12(1), 60–65. https://doi.org/10.1111/1746-692X.12022

Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of Documentation, 25(4), 344-349. https://doi.org/10.1108/eb026482

Rijswijk, K., Klerkx, L., & Turner, J. A. (2019). Digitalisation in the New Zealand agricultural knowledge and innovation system: Initial understandings and emerging organisational responses to digital agriculture. NJAS: Wageningen Journal of Life Sciences, 90–91(1), 1–14. https://doi.org/10.1016/j.njas.2019.100313

Sgroi, F. (2022). The role of blockchain for food safety and market efficiency. Journal of Agriculture and Food Research, 9, 100326. https://doi.org/10.1016/j.jafr.2022.100326

Small, H. (1973). Co‐citation in the scientific literature: A new measure of the relationship between two documents. Journal of the American Society for Information Science, 24(4), 265–269. https://doi.org/10.1002/asi.4630240406

Sorensen, C. G., Pesonen, L., Fountas, S., Suomi, P., Bochtis, D., Bildsøe, P., & Pedersen, S. M. (2010). A user-centric approach for information modelling in arable farming. Computers and Electronics in Agriculture, 73(1), 44–55. https://doi.org/10.1016/j.compag.2010.04.003

Tabacaru, S. (2019). Web of science versus scopus: Journal coverage overlap analysis. University Libraries. https://Oaktrust.Library.Tamu.Edu/Handle/1969.1/175137

Teece, D. J. (2018). Business models and dynamic capabilities. Long Range Planning, 51(1), 40–49. https://doi.org/10.1016/j.lrp.2017.06.007

Trujillo, C. M., & Long, T. M. (2018). Document co-citation analysis to enhance transdisciplinary research. Science Advances, 4(1). https://doi.org/10.1126/sciadv.1701130

van Eck & Waltman Ludo. (2013). VOSviewer manual. Universiteit Leiden. https://www.vosviewer.com/documentation/Manual_VOSviewer_1.5.4.pdf

Vial, G. (2019). Understanding digital transformation: A review and a research agenda. The Journal of Strategic Information Systems, 28(2), 118-144. https://doi.org/10.1016/j.jsis.2019.01.003

Vlachopoulou, M., Ziakis, C., Vergidis, K., & Madas, M. (2021). Analyzing AgriFood-Tech e-Business Models. Sustainability, 13(10), 5516. https://doi.org/10.3390/su13105516

Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming – A review. Agricultural Systems, 153, 69-80. https://doi.org/10.1016/j.agsy.2017.01.023

Wolfert, S., Verdouw, C., van Wassenaer, L., Dolfsma, W., & Klerkx, L. (2023). Digital innovation ecosystems in agri-food: Design principles and organizational framework. Agricultural Systems, 204, 103558. https://doi.org/10.1016/j.agsy.2022.103558

Zhu, M., Li, Y., Khalid, Z., & Elahi, E. (2023). Comprehensive evaluation and promotion strategy of agricultural digitalization level. Sustainability, 15(8), 6528. https://doi.org/10.3390/su15086528

Downloads

Download data is not yet available.

Downloads

Published

25-04-2025

Abstract View

5

PDF Downloaded

3

How to Cite

Vu Thi Thuy Hang, & Nguyen Thi Van. (2025). Mapping the research of digital transformation in agriculture. VNU University of Economics and Business, 5(2), 118. https://doi.org/10.57110/vnu-jeb.v5i2.322

Issue

Section

Original Articles